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Figure 1. This paper investigates large-scale pre-training and post-training with egocentric human data. We curate a large-scale Physical
Human-humanoid$ Dataset, dubbed PH®D, to train a base model to model egocentric human-humanoid behavior. Empirically, we show
that Human, achieves several interesting properties, including strong language following of instructions unseen in robot data, few-shot

execution, and improved on-task performance.

Abstract

Egocentric videos are a valuable and scalable data source
to learn manipulation policies. However, due to significant
data heterogeneity, most existing approaches utilize human
data for simple pre-training, which does not unlock its full
potential. This paper first provides a scalable recipe for
collecting and using egocentric data by categorizing human
data into two categories: in-the-wild and on-task alongside
with systematic analysis on how to use the data. We first
curate a dataset, PH° D, which contains over 1,000 hours
of diverse in-the-wild egocentric data and over 20 hours
of on-task data directly aligned to the target manipulation
tasks. This enables learning a large egocentric language-
conditioned flow matching policy, Humany. With domain
adaptation techniques, Humany minimizes the gap between

humans and humanoids. Empirically, we show Human
achieves several novel properties from scaling human data,
including language following of instructions from only hu-
man data, few-shot learning, and improved robustness using
on-task data.

1. Introduction

The robot manipulation community has recently witnessed
great progress in learning from real robot demonstrations [4,
9, 23, 26, 31, 61]. Behind the curtain are novel algo-
rithms [23] and large-scale robot data [9, 38], which en-
able dexterous and long-horizon tasks [4]. However, ex-
isting foundational manipulation policies still lack robust
real-world generalizability compared to their counterparts


https://xiongyicai.github.io/In-N-On

in LLM [1] or self-driving [46] that are trained on much
larger-scale data.

In search of a novel data source to fuel model train-
ing, researchers have turned to cross-embodiment learn-
ing from different robots [9, 25, 38], and, more recently,
to human data [3, 18, 19, 33]. Intuitively, humans are
naturally the most prominent physical embodiment com-
pared to other morphologies that can easily manipulate
daily objects. Thus, learning from human data has been
studied for over a decade. Modular methods learn affor-
dance [2, 35, 51] and plan robot manipulation in a model-
based fashion [29, 40, 54]. More recently, advances in com-
puter vision have enabled precise finger keypoint tracking
to generate human data with action labels. Recent meth-
ods [24, 27, 30, 32, 37, 40, 42, 56] have shown that such
high-quality data can be directly used for end-to-end train-
ing, which has the potential to be easily scaled up.

However, the vast amount of human data also leads to
significant data heterogeneity. Existing human datasets are
very diverse - ranging from daily activities such as walking
and dancing [18], long-horizon kitchen activities [13], and
even sitcoms [51]. To address such heterogeneity (or mis-
alignment between embodiments), some methods propose
new algorithms to use intermediate representations such as
object pose [29] or affordance [2] to learn from these in-
the-wild datasets. On the other hand, recent end-to-end ap-
proaches [7, 32, 56] have resolved to scaling up pre-training
with human data, and then fine-tuning with robot data. This
approach is usually sub-optimal due to catastrophic forget-
ting [16, 20] from simple fine-tuning with highly heteroge-
neous data.

On the other hand, recent methods [24, 42, 44, 49, 55]
have also focused on collecting on-task human data. In-
stead of recording casual activities, on-task data collec-
tion focuses on curating human demonstrations on the same
tasks that robots will be working on (e.g., recorded by ac-
tual human workers). Compared to in-the-wild data, on-
task data are more task-oriented, in-domain, and segmented
well. These factors ensure good alignment to the target de-
ployment distribution, which has been empirically shown
to enable direct co-training of mixed humans and robot
data [24, 42, 44, 55] to mitigate catastrophic forgetting from
pre-training.

The goal of this paper is to show that it is important to
use both in-the-wild and on-task data to unlock the full po-
tential of human data: in-the-wild data is easy to collect and
diverse, but it may be only suitable for bootstrapping a base
model. In contrast, on-task data is more well-aligned with
the target distribution but often smaller in magnitude.

To this end, we investigate the boundary between these
two paradigms. Our insight is to use in-the-wild data
and on-task data for pre-training and post-training. With
language annotations and a unified human-centric action

space [42], this enables learning of a large egocentric

language-conditioned flow matching policy, Humang. In

addition to scaling up egocentric training data, we perform
systematic study to reveal that naive data mixing leads to
hidden states that discriminate robot and human inputs.

Human, adopts domain adaptation technique to improve

hidden states to fully utilize human training data.

We evaluate Humang on a real Unitree H1 humanoid and

a Unitree G1 humanoid equipped with 5-fingered dexter-

ous hands. Empirically, the pre-training and post-training

for Humany achieve several novel properties, including lan-
guage following of instructions that are unseen in the robot
training data and few-shot learning, which is validated by
systematic ablation studies. In particular, we studied a task,
fast food worker, where data can be collected at a low
marginal cost from real food-industry worker. We show
how the on-task data collected for this practical scenario
improves policy robustness drastically.

In sum, our contributions are,

* A large-scale human-humanoid dataset, PHSD, that pro-
vides data recipe for pre-training and post-training an
egocentric model. We plan to open-source the dataset.

* A base egocentric manipulation model, Humang, which is
augmented with the domain adaptation technique and ap-
plicable to many egocentric bimanual embodiments. The
weights will be open-sourced.

» Extensive experimental results with demonstrations of
language following and few-shot learning on real hu-
manoid robots.

2. Related Work

Large-scale Manipulation Models. Recent advances in
vision-language-action (VLA) models have shown promis-
ing progress in robotic manipulation tasks, with a growing
emphasis on models’ robustness and generalization. Build-
ing upon early efforts in learning from real-robot demon-
strations [12, 60], recent methods [4, 9, 23, 25, 31, 45, 63]
explored how to scale up robot manipulation policy training
with more data. The advances happened both in the mod-
eling regime and the data regime. In the context of model-
ing, VLAs extend vision-language models (VLMs) or large-
language models (LLMs) with action decoders to make use
of pre-trained knowledge infused in VLMs. More recently,
Intelligence et al. [23] also proposed a new paradigm to
make the training process more data-efficient. On the other
hand, data is important for scaling up the manipulation
model. Notably, many large manipulation models [9, 31]
rely on cross-embodiment learning [38], where a model de-
signs its architecture specifically to work with data from
multiple robot embodiments. However, even with cross-
embodiment learning, the magnitude of available data is
still significantly smaller compared to counterparts in lan-
guage or vision models. Current manipulation models are



data-hungry for more generalizability.

Learning from Human Videos. Learning robot policies
from human videos has been an active research direction,
driven by the availability of large-scale human data. Early
efforts [34, 36, 43] focused on leveraging human videos
to pre-train visual representations that are better suited for
downstream manipulation policy learning; or to leverage
human videos to learn intermediate representations such as
affordance [2]. Beyond pre-training on visual tasks for im-
proved initializations, other works [2, 5, 6, 48, 53, 54] at-
tempt to use human data directly for downstream tasks such
as point tracking [6, 28, 53], and high-level planner [48],
which are then used to guide robot action prediction.

End-to-end Learning Manipulation Policies from Hu-
man. An increasing number of works have started to in-
vestigate scaling manipulation in an end-to-end manner by
leveraging human demonstrations [7, 24, 30, 39, 42, 44,
57, 64]. They either use diverse in-the-wild data for pre-
training [7, 30, 32, 56] or on-task data for co-training. No-
tably, Bi et al. [7], Li et al. [30], Luo et al. [32] have shown
pre-training with human data leads to improved generaliz-
ability; Lepert et al. [27] apply modular vision modules to
edit human videos to match robot videos to reduce visual
gaps. Concurrently, EMMA [64] learns a mobile manipula-
tion policy using human data. However, there has yet to be
an attempt to explore both in-the-wild data and on-task data
to cover both pre-training and post-training stages. This pa-
per aims to bridge such a gap by prescribing a recipe for data
curation, an end-to-end large egocentric manipulation base
model, and algorithmic advances to improve the model.

3. Method

This paper discusses models and data recipes for pre-
training and post-training a base model for egocentric ma-
nipulation, as well as analysis of design decisions made to
create the recipes. Sec. 3.1 describes the curation process
for a large human-humanoid dataset. Sec. 3.2 discusses the
design choices for the base model, including data mixture
and domain adaptation.

3.1. PH°D: Physical Humans-Humanoids Dataset

Many human datasets [14, 22, 33, 42, 52, 58] and egocen-
tric robot datasets [15, 62] exist. Naturally, the formats
of the human dataset are similar - most existing datasets
focus on tracking head, wrists, and fingers poses. How-
ever, humanoid hardwares, or robot hardware in general, are
far from convergence. Therefore, these publicly available
egocentric robot datasets are vastly different - kinematics,
DoFs, and mechanical configurations can differ. The differ-
ence in state-action space in each dataset hinders scaling up
the training size.

To tackle this, existing methods attempted to design
physically explainable state-action space [31] or operate

in the unified latent space [50]. However, scaling data in
the same state-action space remains the most explainable
and effective way [42, 45]. For egocentric manipulation,
this paper advocates the human representation for learning,
as humans are the most prevalent embodiment and are the
sources of biological inspiration for bimanual robot designs.

To this end, this paper defines a unified human-centric
state-action space. We then implement a software suite of
robot IK/FK (Inverse Kinematics and Forward Kinematics),
and hand retargeting algorithms to differentiably convert
human and humanoid data from/to our unified space. Fi-
nally, we curate and process data from multiple sources into
a unified format for training.

Unified human-centric state-action space. Follow-
ing human activities datasets [22, 33, 52] and Human-
Humanoid co-learning [42]. We design the state-action
space to have the following elements.

* Theaa € SE(3). We parameterize head poses as the
base transformation with rotation and translation. Com-
pared to previous work [42], this further encodes transla-
tion to support potential applications such as whole-body
loco-manipulation. Current egocentric human data is usu-
ally collected by wearable devices mounted on operators’
head. Hence the localization frame is usually modeled as
world-head transformation.

* TLwrist, TRwrist € SE(3). The wrist poses are mod-
eled as relative to the head pose. Though there is in-
evitable physical difference (e.g., height) among different
data collectors, such a difference can be neglected as the
training data scales.

* PLfinger, PRfinger € R3*5: we model finger motions as
fingertip keypoints, as all well-established optimization-
based finger retargeting algorithms [11, 21, 41] directly
use fingertip keypoints with scaling factors.

* Digripper; DReripper € R: optionally, for bimanual
robots equipped with parallel grippers, we map gripper
distance to human thumb-index fingertip distance. Note
that Ppinger is sufficient for computing Dgyipper-

Retargeting Software Suite. To make it easy for us
and the research community to explore the human-centric
state-action space for egocentric manipulation, we imple-
ment an IK/FK and retargeting software suite based on
Pinocchio [10]. Our suite converts the robot joint positions
from/to human-centric space (Fig. 3 visualizes same human
action retargeted to different humanoids in the accompa-
nying MuJoCo [47] simulator in our suite). Therefore, as
long as a released humanoid manipulation dataset provides
joint readings, it can be used for training. We hope to faci-
tate large-scale egocentric learning on humanoid robot. The
code and assets will be open-sourced.

Aggregating In-the-wild datasets for Pre-training.
Building on our retargeting framework, we use
EgoDex [22], Fourier ActionNet [15], and PH2D [42]
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Figure 2. Method overview. Our approach follows a two-stage training recipe: (1) pre-training on large-scale in-the-wild human and
robot data that are mapped into a unified human-centric state-action space; and (2) on-task post-training using task-aligned human and
robot demonstrations. To bridge the embodiment gap, We employ a domain-adversarial discriminator that takes SigL.IP visual features and
action-state embeddings as input and predicts whether a sample is from human or robot data. Through gradient reversal, this encourages
the policy’s encoders to produce embodiment-invariant representations, enabling effective transfer between human and robot observations.

Figure 3. Our retargeting software suite supports retargeting dif-
ferent humanoids from/to the human-centric representation. Fig-
ure demonstrates retargeting from the same human action to dif-
ferent humanoids in MuJoCo [47]. The code will be released.

for pre-training. Note that with our software suite, our

method also applies to future and concurrent dataset [62].

e EgoDex [22] contains 800+ hours of skill-rich human
demonstrations, which were collected using multiple Ap-
ple Vision Pros. It contains 6dof head pose, wrist pose,
and finger keypoints.

e The ActionNet dataset [15] contains over 100 hours of
humanoid demonstrations - most of which were done on
the Fourier GR1T1 robot embodiment equipped with bi-
manual Fourier 5-fingered 6-DoF dexterous hands.

e The PH2D [42] dataset contains human and humanoid
demonstrations of various tasks. Similar to EgoDex [22],
PH2D also collected human data with Apple Vision Pro,
which can be processed in a similar manner. The hu-
manoid data (collected on Unitree H1 with 5-fingered In-
spire hands) are also processed by our software suite.

Data for Post-training. To ensure high-quality hand
poses in our on-task datasets, we use commercial-grade
data collection devices, including Apple Vision Pro and the

Meta Aria Glass. Both Vision Pro and Meta Aria glass
provide head poses, wrist poses and dense fingertip key-
point predictions. The human dataset also includes 2D key-
point projection, as we hope our released data can also help
other approaches such as generative inpainting [27, 59].
The robot dataset are collected using Apple Vision Pro
with OpenTV [11]. Visualizations and projections of these
datasets can be found in the supplementary material.

3.2. Human,: Foundational Egocentric Base Model
3.2.1. Architecture

While the pre-training and post-training recipes proposed
in this paper are model-agnostic, we adopt a language-
conditioned flow matching model [9]. Specifically, a
SigLIP-based vision module extracts visual tokens v €
REXC where L is the number of patches and C'is the em-
bedding dimension. The SigLIP encoder provides strong
alignment between visual inputs and text, enabling down-
stream instruction grounding. Visual tokens are then com-
bined with text embeddings n € R?*¢ to form a joint
multi-modal representation, which is further processed in
the transformer blocks to propagate cross-modal context.

To use the human-centric representation, we use
lightweight MLPs to encode input states and the output
actions. For the input states, the physically interpretable
human-centric state is projected to a pose latent € R,
We denote the latent tokens produced by the backbone
transformer as

z = Transformers (v, n, z), 2z € R, (1)

which integrate information across modalities. Unless oth-
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Figure 4. Data distributions and sampling factors for pre-training
and post-training.

erwise noted, we use the pre-trained checkpoint released by
Black et al. [9] to initialize the model pre-training. Note that
since the human-centric representations introduce larger
vector sizes and different interpretations of each element at
different indices, we swap out the original projection mod-
ules with different dimensions and random initialization.

3.2.2. Pre-training on Human and Robot Data

We first pretrain the base model using over 1,000+ hours
of mixed data from EgoDex [22], ActionNet [15], and
PH2D [42], covering rich egocentric human and robot ma-
nipulation scenarios. During this stage, the objective is
to learn a unified vision—language—action prior that models
human-like behaviors across different embodiments.

More concretely, let a € R be the target action, the
model is trained with a flow-matching objective in an end-
to-end manner:

Lo =E[ |7 at) — - w3], @

where the Gaussian noise vector u ~ N(0, I), time step
t ~ U(0,1), and interpolated action a; = (1 —t)u+ta. The
flow (2, a4, t) represents the predicted flow vector, which
points from the noisy sample towards the target. This pre-
training stage equips the base model with broad visuomotor
priors from the vast amount of human videos. In addition,
it aligns the VLM originally trained on image-text data to
model human behavior. The shared embodiment space pro-
vides a strong regularization for post-training, enabling ef-
fective transfer between human and robot manipulation.
Data mixing recipe. The distribution of the pre-training

data is presented in Fig. 4a. Note that due to the overwhelm-
ing amount of human data in pre-training, we manually ad-
just the training data sampler ratio to balance and stabilize
the training process.

3.2.3. Post-training on Human and Robot Data

During post-training, we focus exclusively on human and
robot data collected for the task of interest. The goal is
to refine the policy’s language grounding and visuomotor
control to match the distribution of real-world tasks, where
data can be collected by actual human workers performing
these real-world tasks. Thanks to our unified action space
design, the training procedure follows Eq. (2) precisely.

Data mixing recipe. The distribution of post-training
data is presented in Fig. 4b. Compared to pre-training, our
post-training dataset has considerably more robot data. Em-
pirically, we found that sampling slightly more often (e.g.,
70%) from the human data helps preserve semantics in hu-
man data better. This finding is somewhat consistent with
Tao et al. [44], which used an 8:2 sampling ratio to sample
human data more often.

In summary, our pre-training and post-training process
enables various interesting properties, including (1) lan-
guage following of instructions unseen in robot data; (2)
few-shot robot data learning with as few as 1 demonstra-
tion; and (3) improved robustness across related tasks.

3.2.4. Domain Adaptation: Blurring the Line between
Embodiments

Ideally, our model should be embodiment-agnostic and pro-
cess all egocentric data from a human-centric perspective.
However, though we use image augmentation and human-
centric representation with forward kinematics to provide
regularization, the model can still learn to distinguish differ-
ent embodiments, resulting in overfitting to a specific con-
figuration.

To verify this, we first pre-
train and post-train the model us-
ing vanilla denoising objective
Eq. (2). Then, we perform a
simple linear probing study. We
train a simple MLP taking inter-
mediate visual tokens and propri-
oceptive tokens as inputs. The Human Robot
training objective for the MLP is Figure 5. Confusion matrix
a binary classification problem, obtained by linear probing
where it tries to predict if a set of intermediate features from
concatenated visual and proprio- Vanilla model.
ceptive tokens belongs to human
data or robot data. The results are shown in Fig. 5. Surpris-
ingly, on a held-out validation set, the simple MLP achieves
100% success rate - suggesting that the model ‘cheats’ by
implicitly biasing features to recognize if the input is hu-
man or robot. (More technical details are given in the sup-




plementary material). To discourage the model from over-
fitting to specific visual cues or proprioceptive cues, we in-
troduce a discriminator network [17]. Specifically, the net-
work is tasked to classify the type of embodiment. Follow-
ing Ganin et al. [17], the network is modeled as a MLP that
takes in intermediate features with Gradient Reversal Layer
(GRL) [17] to discourage successful classification.

More specifically, the GRL is trained to differentiate be-
tween the feature encoding of human data and those of robot
data. We concatenate the visual tokens v from SigLIP en-
coder with the projected pose latent = along the token di-
mension, and pass them though a attention head to obtain a
feature vector:

m = Attn(Concatenate(v,z)), meRY.  (3)
The feature vector m is then passed through the discrimina-
tor MLP Dy that predicts the input’s embodiment type. The
discriminator is trained with binary cross-entropy loss:

Lp(¢|0) = —E[log Dg(ms)] —E[log(1 — Dy (m.))],

“)

where m;, and m,. denote feature vectors obtained from

human and robot data,respectively. With a GRL inserted be-

tween feature vectors and discriminator Dy, the optimiza-

tion is adversarial: Dy minimizes £p, while the backbone
policy encoders fy maximizes it:

mgax mqgn Lp(p,0) (5)

In other words, the GRL encouraging the upstream pol-
icy encoder to produce features that are invariant to the
human-robot domain distinction. This adversarial setup
promotes feature alignment across data domains and em-
bodiments, enabling more effective transfer of manipulation
behaviors between human demonstrations and robot.

Final Loss. Combining both flow matching L2 loss and
the domain adaptation loss, the final training loss is given
by

Lina = Lem + A Lp(¢ ] 0), (6)

where ) is a hyperparameter balancing the scale of flow
matching loss and discriminator loss. During the training,
we set A =0.1.

4. Experiments

4.1. Experimental Setup

Implementation Details. For raw human-humanoid data,
we use timestamps to synchronize episodes and process
the states and actions into the human-centric representation
with 240x320 images. To obtain the base Humangy model,
we train on 8 H200 GPUs for 100k steps using 160 batch

size. The weights are initialized with pre-trained check-
point [9]. For post-training, we fine-tune the trained base
model on a single HI00 GPU for 30k steps using 10 batch
size. This demonstrates one potential application of our
base model to democratize egocentric manipulation train-
ing with just a single GPU.

Robot Platforms. For data collection and policy de-
ployment, we use a Unitree H1 and a Unitree G1 humanoid
robot. Most of the data was collected on the G1 robot. Thus,
unless otherwise stated, the data and experiments are done
on the G1 robot. Both robots are equipped with Inspire 5-
fingered dexterous hands.

Baselines. We compare with 4 baseline models. my [9]
is a language-conditioned flow matching model trained on
many robot embodiments, which is also the initialization we
use before pre-training. GROOT N1 [8] is another language-
conditioned VLA using diffusion transformers. HAT [42]
trains specialist policies and is thus unsuitable for pre-
training or tasks that require language conditioning. Finally,
Humany w/o human follows the same training procedure,
but without any human data in both stages.

Experimental Protocol. We experiment with 4 differ-
ent humanoid manipulation tasks with in-distribution (1.D.)
and Out-Of-Distribution (0.0.D.) settings. The 1.D. setting
tests the learned skills with language, scenes, and objects
that approximately resemble corresponding sequences in
the robot training demonstrations. The O.0.D. setting tests
configurations that are unseen in the robot training data, but
may present in human data.

The tasks are illustrated in Fig. 6. Objects used in these
tasks are visualized in the supplementary material. Specifi-
cally,

* Single object grasping is a sanity check task. The robot
is placed in front of a table with an object and a container.
The robot is tasked to pick up the object, and place it into
the container. OOD setting: the robot is presented with
objects unseen in the robot training data, different table
heights, and operate in novel scenes.
Multi object grasping is an extension of the single ob-
ject grasping, where we add distractor objects. As shown
in Fig. 6, the robot is tasked to grasp the object. The robot
must follow the language instruction and distinguish the
object from distractors. QOOD setting: the robot is pre-
sented with target objects and distractors unseen in the
robot training data, different table heights, and operate in
novel scenes.

* Burger assembly is intended to mimic a real-world task,
where a worker at a fast food restaurant or at a food pro-
cessing facility assembles a burger based on language in-
structions. The task is long-horizon, which involves mul-
tiple steps from using tongs to pick up ingredients spec-
ified by language, and putting the top bread. In addi-
tion, collecting on-task human data for this application



(c) Following language instruction available only in human data. “Grasping the yellow mustard bottle.”

Figure 6. We task the robot to perform several manipulation tasks to evaluate few-shot learning, language instruction following, and
robustness using on-task human data. Videos in the supplementary. (Top to bottom: burger assembly, pouring, and multi-object grasping).

Method Single Object Grasping | Multi Object Grasping | Burger assembly | Pouring
1.D. 0.0.D ID. 0.0.D I.D. 0.0.D I.D.
o 19/20 19720 25/30 16/30 5/12 3/12 0/20
GROOT N1 18/20 13/20 6/30 8/30 4/12 3/12 0/20
HAT w/ human 17/20 15/20 - - - - 2/20
Humang w/o human | 18/20 18/20 23/30 15/30 7/12 2/12 2/20
Humang (Ours) 20/20 19/20 29/30 30/30 8/12 7/12 5120

Table 1. Baseline comparison results. Our method achieves the best performance among all baselines across the four manipulation tasks,
under both I.D. and O.0.D. settings. We also show that training with large-scale human data improves model performance.

can be hypothetically done by having the actual workers
use wearable devices. OOD setting: the robot is pre-
sented with ingredients unseen in the robot training data
(e.g., Mozzarella cheese) and operate in novel scenes with
different table heights.

¢ Pouring shows the few-shot learning capability of our
model. Compared to previous tasks that have hundreds
of robot sequences per task, we use only 1 robot training
demonstration in the bimanual pouring task, to demon-
strate how Human, enables few-shot robot learning.

4.2. Evaluation

4.2.1. Main Experiment

Zero-shot language following capability from human
data. The most interesting finding is Human, emerges ca-

pability to follow language instructions unseen in the robot
training data. One major weakness of existing VLAs is that
they are bad at following language instructions unseen in
the training data. For instance, in the multi-object grasping
setting, both 7y and GROOT N1 fail to grasp unseen objects
- mo would randomly grasp 1 out of the 2 objects, resulting
in approximately 50% success rate.

On the other hand, Humany is robust at following the
language presented only in the human data. In the multi-
object grasping experiment, the robot is capable of grasp-
ing unseen objects robustly with variations of distractors
and scenes. In the burger assembly task, the robot needs
to use tongs to pick up different ingredients specified by the
model. Again, human data enables the model to use tools to
pick up Mozzarella cheese, which is an ingredient seen only



L Staged Pouring SR
Discriminator - -
Right grasp | Left grasp | Pour SR
X 17/20 5/20 3/20 | 15%
v 16/20 7/20 5/20 | 25%

Table 2. Ablation study of domain adaptation using the pouring
task, which is a challenging bimanual task that can be divided into
3 stages. The success rates (SR) reported are compositional.

in the human data. In sum, this capability is exciting, as it
opens a door to scale up the language understanding ability
of robot manipulation via egocentric human data.

Human, enables 1-shot robot data learning. Next
question we asked is - where is the boundary of such a
language following capability? Can the robot learn a com-
pletely new behavior from just the human data? Empiri-
cally, the answer is no at the current training scale. How-
ever, training with vast human data still enables few-shot
learning capability. With just a single robot demonstration
of the bimanual pouring task, Human, achieves 5/20 suc-
cess rate. We believe that the few-shot performance would
further increase with larger training data scale, which may
ultimately lead to zero-shot behavior.

Human data improves overall performance on chal-
lenging task. The burger assembly task is a challenging
long-horizon task that involves tool usage, working along-
side distractors, and perform multiple actions. Humang
outperforms baseline methods with over 100% relative im-
provement on this challenging task. Notably, in the O.0.D.
scenarios, we intentionally task the robot to manipulate in-
gredients unseen in the robot data (i.e., red cabbage, Moz-
zarella cheese, and swiss cheese) to mimic special requests
to food workers in the real world. In addition to lan-
guage following capability discussed above, we find that
the model is more robust to external disturbances such as
lighting or background changes.

4.2.2. Ablation Study

Domain adaptation prevents model from ‘cheating’ and
helps few-shot learning. As shown in Fig. 5, the vanilla
model implicitly learns to discriminate different embodi-
ments. After adding the GRL layer, the linear probing
experiment yields promising results. Fig. 7 suggests that
linear probing can no longer discriminate embodiments,
which is evident from the unconfident probabilities centered
around 50% comparable to random guesses.

As a result, domain adaptation technique improves final
robot execution. Tab. 2 demonstrates improved few-shot
learning capability. Without a domain discriminator, the
model quickly overfits to the single humanoid demonstra-
tion. Introducing a domain discriminator encourages the
shared representation to become invariant across human and
humanoid domains. As a result, the humanoid can effec-
tively leverage priors learned from human data.

o
o

o
~

Probability

0.2

0.0

Discriminator Discriminator No Discriminator ~ No Discriminator
Robot Human Robot Human

Figure 7. The probabilities produced by linear probing the inter-
mediate features. y-axis: predicted probability of a sample being
an embodiment. The model trained with a discriminator yields
domain-invariant intermediate features.
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Figure 8. Performance on single object grasping. The x-axis rep-
resents the percentage of available single-object grasping robot
demonstrations used in training.

Performance dynamics with robot data as a variable.
Fig. 8 shows the performance change with varying num-
ber of robot data used in training on a simple single-object
grasping task. Human data can effectively regularize the
learning especially in low robot data regime.

Supplementary material. For more results such as de-
tailed failure analysis and videos, we encourage the readers
to check out the supplementary material.

5. Conclusion

In this work, we presented IN-N-ON, a scalable recipe for
leveraging egocentric human data through a principled tax-
onomy that distinguishes in-the-wild and on-task data. With
PHSD, a large-scale dataset comprising over 1,000 hours
of diverse in-the-wild human and humanoid demonstrations
and 20+ hours of task-aligned data, we enabled the training
of Humany. Humany demonstrates several novel properties
of scaling human data with language annotations. There are



several interesting future directions, including further scal-
ing of human data and testing on different robot embodi-
ments other than humanoid robots.
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Supplementary Material

6. Appendix

6.1. Object visualization

We visualized the objects used in each task in Figs 9, 10, 11
and 12.

6.2. Post-training data

We report the detailed data collected for post-training across
all tasks. For each task, we count the total number of demon-
strations performed by both humans and robots.

Task Robot Human
Single Object Grasping 120 2545
Multi Object Grasping 180 1016
Burger assembly 80 750

. 1 + 30 left grasp
Pouring + 30 right grasp 27

Table 3. Overview of post-training data for human and robot demon-
strations. For the pouring task, we collect one initial demonstration
and 30 additional demonstrations for each of the left-grasp and right-
grasp configurations.

6.3. Background Ablation

With scaled pre-training and post-training, Humang exhibits
strong background generalization capabilities. To evaluate
this aspect, we test the Multi-Object Grasping task under a
variety of background. The results are summarized in Tab. 4.

Background Multi Object Grasping
I.D. 0.0.D
White table (original) | 29/30 30/30
Black tablecloth 26/30 29/30
Floral tablecloth 24/30 28/30

Table 4. Ablation study evaluating Multi Object Grasping perfor-
mance under varying background conditions. We report the number
of successful executions over 30 trials for both I.D. and O.0.D set-
tings.

6.4. Multi-target language following

We further evaluate the language-following ability of Humang
in multi-target settings. Specifically, we consider both in-
distribution (I.D.) and out-of-distribution (O.0.D.) language
instructions on the Multi-Object Grasping and Burger Assem-
bly tasks. L.D. instructions are drawn from the robot data,
while O.0.D. instructions involve novel language that appears
only in the human data. We consider it a success if it moves

toward the correct object. Results are reported in Tab. 5.
Human, demonstrates robust multi-target language follow-
ing on both tasks, maintaining high success rates even un-
der O.0.D. instructions, indicating strong zero-shot language-
following ability.

Method Multi Object Grasping | Burger assembly
I.D. 0.0.D I.D. 0.0.D
Humang (Ours) | 29/30 30/30 10/12 10/12

Table 5. Evaluation of multi-target language following for Humang
on the Multi-Object Grasping and Burger Assembly tasks.

6.5. Failure analysis

Despite strong performance across grasping, assembly, and
pouring, HumanO still exhibits consistent failure patterns tied
to perception and long-horizon control. In the different scenes
or under lighting changes, the model occasionally mislocal-
izes objects or confuses similarly colored items, leading to
false grasps or collisions. These are amplified in tasks with
tool use or precise manipulation. For example, during burger
assembly, small inaccuracies in early grasps often snowball
into downstream misplacements that the policy cannot recover
from. Similarly, in pouring tasks, failures in any of the se-
quential sub-stages result in the entire attempt failing.

Additionally, while domain adaptation reduces obvious hu-
man-robot discrepancies, subtle embodiment-specific issues
persist. The motion near joint limits or unstable grasps in
contact-rich settings suggest that the learned representation is
not fully invariant to embodiment details. These issues in-
dicate that although large-scale human data greatly improve
generalization, robust performance on precise, long-horizon
manipulation still requires richer demonstrations and broader
embodiment coverage.



Figure 9. Single Object Grasping: The 4 seen objects (left) are included in the post-training, while the 4 unseen objects (right) never appear
in the human demonstration data and are used to evaluate object-level generalization.
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Figure 10. Multi Object Grasping: The 3 seen objects (left) appear in both human and robot data. The 3 unseen objects (right) are present
only in the human data, together with corresponding language instructions. They are used to evaluate the zero-shot language following.

Figure 11. Burger Assembly: The 2 seen objects (left) appear in both human and robot data. The 2 unseen objects (right) are present only
in the human data, together with corresponding language instructions. They are used to evaluate the zero-shot language following.
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Figure 12. Pouring: The task uses a white protein drink bottle and a plastic cup.
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